WACV 2020 Boosting Classification - Honda Research Institute USA

WACV 2020 Boosting Classification

Boosting Standard Classification Architectures Through a Ranking Regularizer

Ahmed Taha Yi-Ting Chen Teruhisa Misu Abhinav Shrivastava Larry Davis.

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2020, pp. 758-766. IEEE, 2020.

We employ triplet loss as a feature embedding regularizer to boost classification performance. Standard architectures, like ResNet and Inception, are extended to support both losses with minimal hyper-parameter tuning. This promotes generality while fine-tuning pretrained networks. Triplet loss is a powerful surrogate for recently proposed embedding regularizers. Yet, it is avoided due to large batch-size requirement and high computational cost. Through our experiments, we re-assess these assumptions.

During inference, our network supports both classification and embedding tasks without any computational overhead. Quantitative evaluation highlights a steady improvement on five fine-grained recognition datasets. Further evaluation on an imbalanced video dataset achieves significant improvement. Triplet loss brings feature embedding capabilities like nearest neighbor to classification models. Code available at http://bit.ly/2LNYEqL

Downloadable item