Human Action Recognition, Analysis, and Prediction
Although human behavior is complex, it is structured along individual, social, and cultural lines. Intelligent systems that interact with people in uncontrolled environments need capabilities to accurately understand, forecast and respond to human behaviors. Human behavior recognition involves estimation of pose and action and detection of human-object interaction (HOI). Behavior prediction involves forecasting the pose, action, time-to-action, and the diversity in future behaviors. While these problems have received considerable attention using various sensing modalities, challenges remain, particularly when using monocular vision-based methonds.
Related Publications
This paper addresses a new problem of weaklysupervised online action segmentation in instructional videos. We present a framework to segment streaming videos online at test time using Dynamic Programming and show its advantages over greedy sliding window approach. We improve our framework by introducing the Online-Offline Discrepancy Loss (OODL) to encourage the segmentation results to have a higher temporal consistency. Furthermore, only during training, we exploit framewise correspondence between multiple views as supervision for training weakly-labeled instructional videos. In particular, we investigate three different multi-view inference techniques to generate more accurate frame-wise pseudo ground-truth with no additional annotation cost. We present results and ablation studies on two benchmark multi-view datasets, Breakfast and IKEA ASM. Experimental results show efficacy of the proposed methods both qualitatively and quantitatively in two domains of cooking and assembly.
Multi-agent interacting systems are prevalent in the world, from pure physical systems to complicated social dynamic systems. In many applications, effective understanding of the situation and accurate trajectory prediction of interactive agents play a significant role in downstream tasks, such as decision making and planning. In this paper, we propose a generic trajectory forecasting framework (named EvolveGraph) with explicit relational structure recognition and prediction via latent interaction graphs among multiple heterogeneous, interactive agents. Considering the uncertainty of future behaviors, the model is designed to provide multi-modal prediction hypotheses. Since the underlying interactions may evolve even with abrupt changes, and different modalities of evolution may lead to different outcomes, we address the necessity of dynamic relational reasoning and adaptively evolving the interaction graphs. We also introduce a double-stage training pipeline which not only improves training efficiency and accelerates convergence, but also enhances model performance. The proposed framework is evaluated on both synthetic physics simulations and multiple real-world benchmark datasets in various areas. The experimental results illustrate that our approach achieves state-of-the-art performance in terms of prediction accuracy.
Spatio-temporal action localization is an important problem in computer vision that involves detecting where and when activities occur, and therefore requires modeling of both spatial and temporal features. This problem is typically formulated in the context of supervised learning, where the learned classifiers operate on the premise that both training and test data are sampled from the same underlying distribution. However, this assumption does not hold when there is a significant domain shift, leading to poor generalization performance on the test data. To address this, we focus on the hard and novel task of generalizing training models to test samples without access to any labels from the latter for spatio-temporal action localization by proposing an end-to-end unsupervised domain adaptation algorithm. We extend the state-of-the-art object detection framework to localize and classify actions. In order to minimize the domain shift, three domain adaptation modules at image level (temporal and spatial) and instance level (temporal) are designed and integrated. We design a new experimental setup and evaluate the proposed method and different adaptation modules on the UCF-Sports, UCF-101 and JHMDB benchmark datasets. We show that significant performance gain can be achieved when spatial and temporal features are adapted separately, or jointly for the most effective results.
We consider the problem of predicting the future trajectory of scene agents from egocentric views obtained from a moving platform. This problem is important in a variety of domains, particularly for autonomous systems making reactive or strategic decisions in navigation. In an attempt to address this problem, we introduce TITAN (Trajectory Inference using Targeted Action priors Network), a new model that incorporates prior positions, actions, and context to forecast future trajectory of agents and future ego-motion. In the absence of an appropriate dataset for this task, we created the TITAN dataset that consists of 700 labeled video-clips (with odometry) captured from a moving vehicle on highly interactive urban traffic scenes in Tokyo. Our dataset includes 50 labels including vehicle states and actions, pedestrian age groups, and targeted pedestrian action attributes that are organized hierarchically corresponding to atomic, simple/complex-contextual, transportive, and communicative actions. To evaluate our model, we conducted extensive experiments on the TITAN dataset, revealing significant performance improvement against baselines and state-of-the-art algorithms. We also report promising results from our Agent Importance Mechanism (AIM), a module which provides insight into assessment of perceived risk by calculating the relative influence of each agent on the future ego-trajectory. The dataset is available at https://usa.honda-ri.com/titan
Recognition of human actions and associated interactions with objects and the environment is an important problem in computer vision due to its potential applications in a variety of domains. Recently, graph convolutional networks that extract features from the skeleton have demonstrated promising performance. In this paper, we propose a novel Spatio-Temporal Pyramid Graph Convolutional Network (ST-PGN) for online action recognition for ergonomics risk assessment that enables the use of features from all levels of the skeleton feature hierarchy. The proposed algorithm outperforms state-of-art action recognition algorithms tested on two public benchmark datasets typically used for postural assessment (TUM and UW-IOM). We also introduce a pipeline to enhance postural assessment methods with online action recognition techniques. Finally, the proposed algorithm is integrated with a traditional ergonomics risk index (REBA) to demonstrate the potential value for assessment of musculoskeletal disorders in occupational safety.
Inferring relational behavior between road users as well as road users and their surrounding physical space is an important step toward effective modeling and prediction of navigation strategies adopted by participants in road scenes. To this end, we propose a relation-aware framework for future trajectory forecast. Our system aims to infer relational information from the interactions of road users with each other and with the environment. The first module involves visual encoding of Spatio-temporal features, which captures human-human and human-space interactions over time. The following module explicitly constructs pair-wise relations from Spatio-temporal interactions and identifies more descriptive relations that highly influence future motion of the target road user by considering its past trajectory. The resulting relational features are used to forecast future locations of the target, in the form of heatmaps with an additional guidance of spatial dependencies and consideration of the uncertainty. Extensive evaluations on the public benchmark datasets demonstrate the robustness and efficacy of the proposed framework as observed by performances higher than the state-of-the-art methods.