AAAI-2022 Recursive Reasoning

Recursive Reasoning Graph for Multi-Agent Reinforcement Learning

X. Ma D. Isele J. K. Gupta K. Fujimura M. J. Kochenderfer

AAAI Conference on Artificial Intelligence

Multi-agent reinforcement learning (MARL) provides an efficient way for simultaneously learning policies for multiple agents interacting with each other. However, in scenarios requiring complex interactions, existing algorithms can suffer from an inability to accurately anticipate the influence of selfactions on other agents. Incorporating an ability to reason about other agents’ potential responses can allow an agent to formulate more effective strategies. This paper adopts a recursive reasoning model in a centralized-training-decentralizedexecution framework to help learning agents better cooperate with or compete against others. The proposed algorithm, referred to as the Recursive Reasoning Graph (R2G), shows state-of-the-art performance on multiple multi-agent particle and robotics games.

Downloadable item