Rank2Tell Dataset

The Rank2Tell Dataset is captured from a moving vehicle on highly interactive traffic scenes in San Francisco Bay Area.

Introduction 

The Rank2Tell Dataset is captured from a moving vehicle on highly interactive traffic scenes in San Francisco Bay Area.

  • 116 clips (~20s each) of 10FPS captured using an instrumented vehicle equipped with three Point Grey Grasshopper video cameras with a resolution of 1920 × 1200 pixels, a Velodyne HDL-64E S2 LiDAR sensor, and high precision GPS. 
  • Vehicle Controller Area Network (CAN) data is collected for analyzing how drivers manipulate steering, breaking, and throttle. 
  • All sensor data are synchronized and timestamped using ROS and customized hardware and software.
  • Includes Video-level Q/A, Object-level Q/A, LiDAR and 3D bounding boxes (with tracking), Field of view from 3 cameras (stitched), important object bounding boxes (multiple important objects per frame with multiple levels of importance- High, Medium, Low), Free-form captions (multiple captions per object for multiple objects), ego-car intention. 

Video

 

Annotation Schema


 

Dataset Structure

-Processed: 
        |
        |
        ----Rank2Tell_all_obj_vocabulary.json (wordtoidx (word to index mapping), idxtoword (index to word mapping)
            |
            |
            ----train_split.txt 
            |
            |
            ----test_split.txt 
            |
            |
            ----val_split.txt 


- Scenarios: 
    |
    |
    scenario_xxx: sequence of sensor data
        |
        ----3_camera_images:
        |        |
        |        ---image_*.png (center camera image)
        |        |
        |        ---image_left*.png (left camera image)
        |        |
        |        ---image_right*.png (right camera image)
        |
        ----Stitched_camera_frames:
        |        |
        |        ---frame_*.png (stitched left, center and right camera image)
        |
        ----CAN_data (Decoded CAN DATA):
        |        |
        |        ---CAN_yaw_yyy.csv: yaw (deg/s)
        |        |
        |        ---CAN_vel_yyy.csv: speed (km/hr)
        |
        ----labels (labels) [c: center, l: length]:
        |        |
        |        ---labels_3d1_yyy.txt: (label, trackerID, state[static/dynamic], c_x, c_y, c_z, l_x, l_y, l_z, yaw) 3D  bounding box labeled in velodyne frame
        |
        ----pointcloud (pointcloud):
        |        |
        |        ---pointcloud1_yyy.ply: Full 360 deg pointcloud (surfel format, fields: xyz, radius->intensity, confidence->ring_number, curvature->encoder_angle)
        |                            
        |                            
        ----ego_intentions (frame level intention of ego car)
        |        |
        |        —scenario_xxx.csv: (frame_num, intention(straight/ left/ right)]
        |
        ----GPS_data (GPS+IMU DATA):
        |        |
        |        --gps_yyy.csv: Long_Rel,Lat_Rel,In_Height,Tilt_Roll,Tilt_Pitch,Tilt_Yaw,Vel_x,Vel_y,Vel_z,Std_Dev_x,Std_Dev_y,Std_Dev_z,Std_Dev_roll,Std_Dev_pitch,Std_Dev_yaw,Std_Dev_vel_x,Std_Dev_vel_y,Std_Dev_vel_z,Abs_Lat,Abs_Long
        |
        ---odom (Odometer Data:
                |
                --odom_yyy.txt: translation (tx, ty, tz), rotation(roll, pitch, yaw)
        |
        ----importance annotations(4W + 1H annotations)
        |        |
        |        — integrated_annotations.json

Download the dataset

This dataset corresponds to the paper, "Rank2Tell: A Multimodal Driving Dataset for Joint Importance Ranking and Reasoning". In the current release, the data is available for researchers from universities. Use this link to make the download request.

Citation

@inproceedings{sachdeva2024rank2tell,
  title={Rank2tell: A multimodal driving dataset for joint importance ranking and reasoning},
  author={Sachdeva, Enna and Agarwal, Nakul and Chundi, Suhas and Roelofs, Sean and Li, Jiachen and Kochenderfer, Mykel and Choi, Chiho and Dariush, Behzad},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={7513--7522},
  year={2024}
}