Pose estimation from depth images - Honda Research Institute USA

Pose estimation from depth images

Pose estimation from depth images

This project presents a control theoretic approach for human pose estimation from a set of key feature points detected using depth image streams obtained from a time of flight imaging device.

This project considers a model-based, Cartesian control theoretic approach for estimating human pose from a set of key features points (key-points) detected using depth images obtained from a time of flight imaging device. The key-points represent positions of anatomical landmarks, detected and tracked over time based on a probabilistic inferencing algorithm that is robust to partial occlusions and capable of resolving ambiguities in detection.  The detected key-points are subsequently used as input to a constrained, closed loop inverse kinematics algorithm which not only estimates the pose of the articulated human model, but also provides feedback to the key-point detection module in order to resolve ambiguities or to provide estimates of undetected key-points. Based on a standard kinematic and mesh model of a human, constraints such as joint limit avoidance, and self penetration avoidance are enforced within the closed loop inverse kinematics framework. We demonstrate the effectiveness of the algorithm with experimental results of upper-body and full body pose reconstruction from a small set of detected key-points. On average, the proposed algorithm runs at approximately 10 frames per second for the upper-body and 5 frames per second for whole body reconstruction on a standard 2.13 GHz

laptop PC.

Publications

Open Journal Vehicular Technology 2024 2025
Samuel Thornton, Nithin Santhanam, Rajeev Chhajer, Sujit Dey
IEEE Conference on Decision and Control (CDC) 2024
Sooyung Byeon, Danyang Tian, Jackie Ayoub, Miao Song, Ehsan Moradi Pari, Inseok Hwang
Neural Information Processing Systems (NeurIPS), 2024. 2024
Seunggeun Chi, Pin-Hao Huang, Enna Sachdeva, Hengbo Ma, Karthik Ramani, Kwonjoon Lee
NeurIPS 2024 2024
Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee, Ehsan Moradi-Pari, Charles Michael Lewis, Katia P. Sycara
Robotics and Automation Letters (RA-L) 2024
Jinning Li, Jiachen Li, Sangjae Bae, and David Isele
Conference on Robot Learning (CoRL) 2024 Learning Robot Fine and Dexterous Manipulation Workshop 2024
Thomas Power, Abhinav Kumar, Fan Yang, Sergio Aguilera Marinovic, Soshi Iba, Rana Soltani Zarrin, Dmitry Berenson
Empirical Methods in Natural Language Processing (EMNLP 2024) 2024
Muhan Lin, Shuyang Shi, Yue Guo, Behdad Chalaki, Vaishnav Tadiparthi, Simon Stepputtis, Joseph Campbell, Katia P. Sycara, Ehsan Moradi-Pari
Frontiers in Robotics and Automation 2024
Hifza Javed, Weinan Wang, Affan Bin Usman, and Nawid Jamali
International Journal on Robotics Research 2024
Muchen Sun, Francesca Baldini, Pete Trautman, Todd Murphey
Robotics and Automation Letters (RA-L) 2024
Mansur M. Arief, Mike Timmerman, Jiachen Li, David Isele, and Mykel J. Kochenderfer
Nat. Commun. 15, 10080 (2024) 2024
Xufan Li, Samuel Wyss, Emanuil Yanev, Qing-Jie Li, Shuang Wu, Yongwen Sun, Raymond R. Unocic, Joseph Stage, Matthew Strasbourg, Lucas M. Sassi, Yingxin Zhu, Ju Li, Yang Yang, James Hone, Nicholas Borys, P. James Schuck, Avetik R. Harutyunyan
NeurIPS 2024 Workshop Open-World Agents 2024
Nikki_Lijing_Kuang, Songpo Li, Soshi Iba
Intelligent Robots and Systems (IROS) 2024
Hongyu Li, Snehal Dikhale, Jinda Cui, Soshi Iba, and Nawid Jamali
IROS 2024 2024
Viet-Anh Le​, Vaishnav Tadiparthi, Behdad Chalaki,​ Hossein Nourkhiz Mahjoub, Jovin D’sa, Ehsan Moradi-Pari​
arXiv preprint arXiv:2409.09415 (2024) 2024
Lingo, Ryan, Martin Arroyo, and Rajeev Chhajer
Conference on Robot Learning (CoRL) 2024
Patrick Naughton, Jinda Cui, Karankumar Patel, and Soshi Iba
European Conference on Computer Vision (ECCV), 2024 2024
Yuchen Yang, Kwonjoon Lee, Behzad Dariush, Yinzhi Cao, Shao-Yuan Lo
European Conference on Computer Vision (ECCV), 2024 2024
Seunggeun Chi, Hyung-gun Chi, Hengbo Ma, Nakul Agarwal, Faizan Siddiqui, Karthik Ramani, Kwonjoon Lee
European Conference on Computer Vision (ECCV), 2024 2024
Shijie Wang, Qi Zhao, Minh Quan Do, Nakul Agarwal, Kwonjoon Lee, Chen Sun