Stability and a control strategy of multilink musculoskeletal model with applications in FES

Stability and a control strategy of multilink musculoskeletal model with applications in FES

Journal Article

Abstract

​​This paper introduces a relegated  control strategy for point-to-point
movement of musculoskeletal systems driven by redundant actuators.
The actuator system is partitioned to two functional groupings
referred to as gravity compensators  and movement generators.  Unlike
dynamic optimization methods, relegation of control enables real-time
computation of control signals to the muscle actuators.  It is shown
that this  strategy significantly reduces the degree of co-activation
needed to stabilize the movement. The real-time nature of this strategy coupled with reduced co-activation makes the proposed strategy amenable for multichannel control of parapalegics through FES.   Simulations of a three-link sagittal system  are conducted to test the algorithm  for a bowing movement.

Details

PUBLISHED IN
IEEE Transactions on Biomedical Engineering, Vol 45, No 1, pp 3-14
PUBLICATION DATE
01 一月 1998
AUTHORS
B. Dariush, M. Parnianpour, H. Hemami