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Abstract— 3D multi-object detection and tracking are crucial
for traffic scene understanding. However, the community pays
less attention to these areas due to the lack of a standardized
benchmark dataset to advance the field. Moreover, existing
datasets (e.g., KITTI [1]) do not provide sufficient data and
labels to tackle challenging scenes where highly interactive and
occluded traffic participants are present. To address the issues,
we present the Honda Research Institute 3D Dataset (H3D), a
large-scale full-surround 3D multi-object detection and tracking
dataset collected using a 3D LiDAR scanner. H3D comprises
of 160 crowded and highly interactive traffic scenes with a
total of 1 million labeled instances in 27,721 frames. With
unique dataset size, rich annotations, and complex scenes, H3D
is gathered to stimulate research on full-surround 3D multi-
object detection and tracking. To effectively and efficiently
annotate a large-scale 3D point cloud dataset, we propose
a labeling methodology to speed up the overall annotation
cycle. A standardized benchmark is created to evaluate full-
surround 3D multi-object detection and tracking algorithms.
3D object detection and tracking algorithms are trained and
tested on H3D. Finally, sources of errors are discussed for the
development of future algorithms.

I. INTRODUCTION

Multi-object detection and tracking are two essential
tasks for traffic scene understanding. The field has been
significantly boosted by recent advances of deep learning
algorithms [2], [3], [4], [5], [6] and an increasing num-
ber of datasets [7], [8], [9], [10], [11]. While tremendous
progress has been made in 2D traffic scene understanding,
it still suffers from the fundamental limitations in the sens-
ing capability and lack of 3D information. Recently, with
the emerging technology of 3D range scanners, the range
sensor directly measure 3D distances by illuminating the
environment with pulsed laser light. It enables a wide range
of robotic applications in the 3D world. While 3D scene
understanding is important for these applications, relatively
small efforts [1], [12], [13], [14] have been attempted in
comparison to its 2D counterpart.

The Oxford RobotCar dataset [12] was proposed to ad-
dress the challenges of robust localization and mapping
under significantly different weather and lighting conditions.
Recently, Jeong et al. [14] introduced a complex urban
LiDAR dataset collected in metropolitan areas, large building
complexes, and underground parking lots. However, these
datasets mainly focus on Simultaneous Localization and
Mapping (SLAM).
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Fig. 1: The Honda Research Institute 3D Dataset (H3D)
for full-surround 3D multi-object detection and tracking in
crowded urban scenes.

Among the existing attempts, KITTI dataset [1] enables
various scene understanding tasks including 3D object de-
tection and tracking. Specifically, it comprises of more than
200k manually labeled 3D objects captured in cluttered
scenes. However, KITTI dataset is insufficient to advance the
future development of 3D multi-object detection and tracking
for the following reasons. First, the 3D object annotations are
only labeled in the frontal view that limits the applications
required full-surround reasoning. Second, KITTI dataset
has relatively simple scene complexity without extensive
data from crowded urban scenes, e.g., metropolitan areas
where highly interacting and occluding traffic participants
are present. Third, the richness of existing labels in KITTI
dataset is inadequate for deep learning algorithms to learn
diverse appearances from data. Fourth, KITTI dataset does
not have a standardized evaluation for full-surround multi-
object detection and tracking in 3D.

To address the aforementioned issues, H3D is designed
and collected with the explicit goal of stimulating research
on full-surround 3D multi-object detection and tracking in
crowded urban scenes. The H3D is gathered from HDD
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Fig. 2: Geographical distribution of H3D.

dataset1 [15], a large scale naturalistic driving dataset col-
lected in San Francisco Bay Area. Diverse, rich, and complex
traffic scenes are selected in four major urban scenes as
shown in Fig. 2 to develop and evaluate 3D multi-object
detection and tracking algorithms. To annotate a large-
scale dataset, we establish an effective and efficient labeling
process to speed up the overall annotation cycle. The details
will be discussed in Sec. III-C.2.

The contributions are summarized as follows. First, H3D
is the first dataset for full-surround 3D multi-object de-
tection and tracking in crowded urban scenes comprising
of 1,071,302 3D bounding box labels of 8 common traf-
fic participants. Second, a labeling methodology is intro-
duced to annotate large-scale 3D bounding boxes. Third,
a standardized benchmark of full-surround 3D multi-object
detection and tracking is established for future algorithm
developments. The dataset is available at http://usa.
honda-ri.com/H3D.

II. TRAFFIC SCENE DATASETS

An increasing number of 2D scene understanding
datasets [9], [10], [11] are proposed in recent years. In par-
ticular, these datasets aim to stimulate research on semantic
segmentation for traffic scenes by providing high quality
labels and scalable dataset generation methodologies. The
Cityscapes dataset provides 5000 images with high quality
pixel-level annotations and additional 20,000 images with
coarse annotations for methods that leverage large volumes
of weakly-labeled data [9]. The Mapillary dataset [10] in-
crease the size of pixel-level annotations to 20,000 images
and the diversity of images by selecting images from all
around the world. While the two datasets provide high quality
and high volume 2D annotations, they lack information from
3D to enable research on 3D object detection and tracking.

With a comparison to 2D scene understanding, relatively
small efforts [16], [13], [17] have been made in 3D due to
the costs for installing a high quality 3D range scanner and
difficulties in labeling annotations in point cloud on a large-
scale. Semantic3D.Net [13] and Oakland dataset [16] are two
point cloud datasets that provide semantic labels for point
cloud classification. The Ford Campus LiDAR Dataset [17]

1https://usa.honda-ri.com/HDD

consists of point cloud data collected in urban environments
from multiple LiDAR devices. However, 3D bounding boxes
and tracks of objects are not available to enable research on
3D detection and tracking of traffic participants.

It is non-trivial to manually label large-scale datasets.
Huang et al. [11] annotate large-scale semantic segmenta-
tion by projecting labeled semantic labels on survey-grade
dense 3D points. In the proposed labeling methodology,
we leverage a similar idea by applying LiDAR SLAM to
register multiple LiDAR scans to form a dense point cloud.
In this case, static objects will only have to be labeled once
instead of a frame-by-frame annotation. This methodology
significantly improves the overall labeling cycle. More details
will be discussed in Sec. III-C.2.

III. H3D DATASET

An outline of the steps involved in dataset generation is
shown in Fig. 3:

• Calibration between GPS/IMU (ADMA sensor) and
LiDAR (Velodyne HDL-64E) is obtained using hand-
eye calibration method [18] which is a well-known
approach to find the relationship between two given
trajectories from different coordinate system. Data from
all five sensors (3 cameras, LiDAR and GPS/IMU) is
time-synchronized with GPS time-stamps.

• Undistortion in point cloud data is performed to remove
motion artifacts for superior annotation.

• Point cloud registration is done to get ego-vehicle
odometry estimates and point cloud data in each sce-
nario is transformed to a fixed set of World coordinates.

• Annotation of objects in point clouds is done in the
World coordinates by a group of annotators.

• The labeled data (bounding boxes and point cloud)
is then converted back to Velodyne coordinates and
changed to raw point cloud data.

A. Sensor Setup

The vehicle is equipped with the following sensors (as
shown in Fig. 4):

• three color PointGrey Grasshopper3 video cameras
(30HZ frame rate, 1920×1200 resolution and 90◦ field-
of-view (FOV) for left and right, 80◦ FOV for center)

http://usa.honda-ri.com/H3D
http://usa.honda-ri.com/H3D


Fig. 3: Data labelling procedure

• a Velodyne HDL-64E S2 3D LiDAR (10 HZ spin-rate,
64 laser beams, range: 100m, vertical FOV 26.9◦)

• a GeneSys Eletronik GmbH Automotive Dynamic Mo-
tion Analyzer (ADMA) with DGPS output gyros, ac-
celerometers and GPS (frequency: 100 HZ)

Sensor data is recorded using a Ubuntu 14.04 machine
with two eight-core Intel i5-6600K 3.5 GHz Quad-Core
processors, 16 GB DDR3 memory, and a RAID 0 array of
four 2TB SSDs.

B. Data Collection

Data is collected in 4 urban areas in the San Francisco Bay
Area from April to September 2017 using an instrumented
vehicle shown in Fig. 4(a). The routes for data collection
are overlaid on images from Google Earth as highlighted in
Fig. 2. Sensor data is synchronized using Robot Operating
System (ROS)2 via a customized hardware setup.

C. Data Labelling Procedure

In this section, we describe details of the 3D objects and
tracklets labeling procedure for H3D.

1) Data Preparation: Cameras and LiDAR are hardware-
timestamped using the GPS time-stamps and other sensor
data is synchronized via ROS. To prepare point cloud for
annotation, an undistortion process is necessary because a
raw point cloud is distorted due to a spinning LiDAR.

2http://www.ros.org/

The process of undistortion is described as follows. The
motion distortion is corrected using high-frequency fused
GPS data obtained from the GPS/IMU sensor using linear
interpolation method mentioned in [19].

Normal Distributive Transform (NDT) [20] method is
used for point cloud registration as shown in Fig. 3. With
each sequence being independent, point cloud is registered
with respect to the initial frame (World) of that particular
sequence. Such a registration process is needed for odometry
estimation as GPS data is unreliable in urban areas with
enclosed spaces and hence the transformation of point cloud
to World frame cannot be achieved accurately. Transforming
point cloud data to World coordinates simplifies the data
annotation process as data association between static objects
can be easily achieved given the correspondence between
point cloud data in various frames.

2) Data Annotation: The registered point cloud data al-
lows annotators to determine corresponding objects easily.
Additionally, the three cameras are utilized to assist the
annotation process in order to determine object categories.
We registered a sequence of point clouds at 2Hz from the
odometry computed using NDT. Bounding boxes and track
IDs are annotated on the registered point cloud. Doing so,
the static objects in the registered frames can be annotated
in one shot and this significantly reduces the labeling efforts.
Moreover, the registered point cloud provides easier associa-
tion of objects across frames. The human-labeled annotations



(a) sensor layout of the vehicle

(b) side view of the vehicle

Fig. 4: Vehicle sensor setup

Fig. 5: Distribution of classes in H3D and KITTI

are then propagated to 10Hz using a linear interpolation
technique, assuming a constant velocity model between each
frame. The labeled data (bounding boxes with track IDs) is
transformed back to the Velodyne coordinates using odometry
estimates.

The quality of final labeled data is verified frame-by-frame
by projecting the labeled bounding boxes onto corresponding
images via methods similar to [21], [22] and by visually
inspecting the labeled data in BEV as shown in Fig. 3.

D. Statistics

• Complexity: A comparison of density of common
traffic participants averaged across 21 labeled scenarios

train validation test
Scenarios 50 30 80
Frames 8873 5170 13678

Car 157174 84646 228738
Pedestrian 147985 65549 242697

TABLE I: Instances for the train, validation, and test split

BEV 3D
car 76.50 68.31

pedestrian 50.88 50.39

TABLE II: mAP scores with 0.5 IoU for Car and 0.25 IoU
for Pedestrian

in KITTI and 160 labeled scenarios in H3D is done
to show the complexity of H3D dataset. For a fair
comparison, number of annotations in H3D’s 360◦

scene is assumed to be 4 times that of number of
annotations in KITTI which are in frontal view of the
scene. We observed that density of traffic participants
in H3D is 15 times higher than that in KITTI.

• Volume: The total number of bounding box annota-
tions and the various classes annotated are shown in
Fig. 5. Also, it can be seen from Table I that the
proportion of cars and pedestrians is consistent among
training/validation/test datasets.

IV. 3D DETECTION

H3D is currently the only dataset that enables full 360-
degree object detection in point cloud. This paper evaluates
VoxelNet [23] on H3D to obtain baseline values and assess
the complexity of the dataset.

A similar training procedure is adapted to that from the
original literature (VoxelNet) with following modifications.
Points within 40 meters radius of ego-vehicle are considered
for car detection and points within 25.6 meters radius are
considered for pedestrian detection. The models for both
car and pedestrian detection are trained using an ADAM
optimizer. A learning rate of 0.01 is used for the first 40
epochs, then decreased to 0.001 for the next 20 epochs and
further decreased to 0.0001 for the last 20 epochs (total 80
epochs). A batch size of 12 is used during training.

For evaluation, a similar protocol as KITTI is adapted. The
IoU threshold for class car is set to 0.5 and that for class
pedestrian is set to 0.25. Car and truck classes are combined
when evaluating car detection performance. The results are
summarized in (Table II) and shown in Fig. 7. The following
challenges are encountered in 3D detection as highlighted in
Fig. 8. The yaw estimation is not good where number of
points for the particular object is less. Pedestrian detection
fails to perform due to occlusion in crowded scenes.

V. 3D MULTI-OBJECT TRACKING

3D objects are tracked using an Unscented Kalman Filter
(UKF) via following four steps - prediction, data-association,



Fig. 6: Data annotation verification by projecting annotation onto image and bird’s eye view (BEV), with color coded track
ID in BEV

(a) all pedestrians and cars are de-
tected with correct orientation

(b) open area detections output

Fig. 7: Successful detection cases in BEV

(a) wrong orientation for static vehi-
cles in red dotted circle

(b) missing pedestrians in red dot-
ted circle (because of occlusions)

Fig. 8: Failure detection cases in BEV

update and track-management. Data association of objects is
done via euclidean distance between centroids of objects.

Parameters used for tracking are summarized as follows.

MOTA MOTP MT ML
car 76.2 73.1 56.7 25.1

pedestrian 36.8 63.0 14.1 43.4

TABLE III: MOT scores with 0.5 3D IoU for Car and
Pedestrian

The state vector comprises of 5 variables, namely, ’x’ and
’y’ position of objects (in m), their velocities (in m/s), their
orientation (in rad) and their angular velocities (in rad/s).
The euclidean distance threshold is set to 2 meters for data
association for both car and pedestrian classes. An occlusion
factor of 2, where occlusion factor is multiplied by the
vertical area of object to determine if it becomes highly
occluded. Lastly, an aging factor of 2 is used such that an
object is kept in the history of tracks for at most 2 frames.

The evaluation protocol from KITTI is adapted for track-
ing [1] with 0.5 3D IoU for both car and pedestrian classes.
In the tracking algorithm evaluation, CLEAR MOT metrics
are used [24] which include Multi-Object Tracking Pre-
cision (MOTP), Multi-Object Tracking Accuracy (MOTA)
and Mostly Tracked (MT), Mostly Lost (ML) as mentioned
in [25]. The results for tracking are summarized in Table III
The analysis of tracking results shows that output is highly
affected by quality of detections. The tracking algorithm is
also evaluated with ground-truth locations of objects. The
results indicate a considerable increase in accuracy with 0.99
MOTA, 1.00 MOTP, 1.00 MT and 0.00 ML for cars; 0.83
MOTA, 1.00 MOTP, 0.77 MT and 0.11 ML for pedestrians.
Tracking is also affected when occlusions are present as
shown in Fig. 9 for Pedestrians (track ID=15,17) with red
dotted circle.

VI. CONCLUSION

This paper demonstrates the uniqueness and importance
of H3D for research on full-surround 3D multi-object



(a) frame number=1, starting frame in sequence (b) frame number=22, pedestrians disappeared due
to occlusion

(c) frame number=34, new track IDs assigned to
pedestrians

Fig. 9: Failure cases in long-term tracking via UKF for pedestrians; the red dotted circles in three different frames over
time; (a) original pedestrian tracks; (b) highlight missing tracks due to occlusion; (c) change in data association

detection and tracking in crowded urban scenes. Labelling
methodology of H3D allows annotation of 3D objects and
their track IDs on a large-scale efficiently. A standard
benchmark for future 3D point cloud detection and tracking
algorithms development is established in the paper. Given
the significantly raised attention for 3D scene understanding,
we hope that H3D can push the performance envelope.
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